

VOYAGE 81

Opportunities in wafer-level optics: the benefits of wide-band color filter arrays

Boaz Arad

Company

Tel-Aviv

30% PhDs

11

Hyperspectral Imaging

Spectral Resolution

Offering Overview

Material Sensing

Low-Light Imaging

Material Sensing With Existing Cameras

Our **patented** technology **recovers hyperspectral information** from **existing cameras** providing a unique and **low cost** solution for **material sensing**.

Automotive Perception Challenges for Driver Assistance / Autonomy

Shape and color don't tell the whole story

Water or Oil?

Tire on Asphalt

Black Ice

Human or Photo?

Potholes

Shade detection/correction

Other materials Examples: Road types, Block, Wood..

How does it work?

"SIR" – Spectral Information Recovery

A propriety technology* leverages prior knowledge to recover higher order spectral data

Grayscale Image

*[Arad and Ben-Shahar, ECCV 2016]

Low Light Color Filter Array

The RGB Photon "Tax"

Average Transmittance – average amount of photons which successfully pass through color filters relative to those who could be detected by the underlying CMOS sensor:

~33%

Minimum Transmittance – Transmittance of the "darkest" channel. A major limiting factor in low-light imaging:

*66% of light lost in each pixel *Only 3 colors sampled

"Tax Evasion" Attempts

	RGB	RCCB	RGBW	RYYB
Avg. transmittance (relative to RGB)	100%	160%	150%	138%
Min. transmittance (relative to RGB mean)	79 %	79 %	79 %	79 %
Exposure imbalance (relative to RGB)	x1	x2	x2	x1.2
Misc.				

RYYB – Case Study

RYYB Filter (estimated)

Channel Exposure Imbalance

Non-uniform exposure across Y and B/R pixels reduces color quality under medium or high illumination conditions.

RYYB – Case Study

RYYB Filter (estimated)

Lower limit unchanged

Red/Blue channel noise threshold remains similar to RGB, reducing color accuracy in low-light scenes.

Overview

Comparison to other CFAs over real-world test scenes:

	RGB	RCCB	RGBW	RYYB	VOYAGE 81
Avg. transmittance (relative to RGB)	100%	160%	150%	138%	204%
Min. transmittance (relative to RGB mean)	79%	79%	79%	79%	158%
Exposure imbalance (relative to RGB)	x1	x2	x2	x1.2	x1
Misc.					provides hyperspectral data

With **minor customizations** in hardware, significant **gains (>%200)** can be made **in low-light performance** of existing sensor platforms – **no retooling necessary**.

Low Light: Hardware Prototype

Sunlight

Frame Rate (CPU): 7.0FPS Display: 3.1FPS

Exposure: 20ms

Stop

Illumination Improvement: 214.4%

Statistics: Processing: 142.8ms Transfer: 7.0ms Grab: 55.4ms

Pause/Resume

Zoom to ROI

Low Power LED

Frame Rate (CPU): 4.7FPS Display: 1.5FPS

Exposure: 250ms

Illumination Improvement: 198.1%

Statistics: Processing: 212.1ms Transfer: 12.5ms Grab: 285.3ms

Stop

Pause/Resume Zoom to ROI

Under 1 Lux

Under 1 Lux

Voyage 81

Wide Band Filters

Properties:

- High Transmittance
- Wide Band
- Applicable to Small Pixel Size
- Low-Cost

Manufacturing:

- Pigment Based
- Dielectric
- Others...

Additional Opportunities

Agriculture

Medical

Food Safety

Geology

Defense

Research

Consumer

Automotive

VOYAGE 81

Spectral Reconstruction Challenge

CVPR 2020 Seattle, Washington

This presentation was presented at EPIC Meeting on Wafer Level Optics 2019

