

SCIL technology for direct patterning of functional optics

EPIC meeting Neuchatel 2019

Marc Verschuuren,Rob Voorkamp, SCIL team

November 7, 2019

marc.verschuuren@philips.com

Contents

- SCIL Nanoimprint Solutions
- SCIL technology and materials
- Tooling and roadmap
- Pattern uniformity
- Conclusions

SCIL Nanoimprint solutions

- Developed in Philips research from 2001, SCIL venture start in 2015
- SCIL is a unique and proprietary technology for nanoprint and nanoimprint lithography
- SCIL Nanoimprint solutions for wafer scale nano patterning
 - Imprint tools for low and high volume production
 - Stamp materials or ready-to-use stamps
 - NanoGlass[®] resists
 - Customer specific SCIL processes
- This enables our customers to increase performance and lower costs of their products
- Our customers include manufacturers of LEDs, lasers, optical components, solar cells, bio-sensors and many others

Substrate Conformal Imprint Lithography (SCIL)

- Substrate conformal NIL solution
 - The only real conformal imprint technology
- Composite stamp sub-10nm resolution
 - Flexible enough to follow substrate non-flatness
 - Hard enough to achieve nano structures
- Unique Imprint process
 - Sequential low pressure imprint cycle. Capillary force driven
 - ~1.5μm overlay alignment over 200mm wafer
- Full inorganic imprint resist (NanoGlass®)
 - Good etch resistance, thermal stability, optical transparent and UV stable
 - Stamp lifetime > 500 imprints for sub-50nm patterns

Substrate Conformal Imprint Lithography (SCIL)

- Substrate conformal NIL solution
 - The only real conformal imprint technology
- Composite stamp sub-10nm resolution
 - Flexible enough to follow substrate non-flatness
 - Hard enough to achieve nano structures
- Unique Imprint process
 - Sequential low pressure imprint cycle. Capillary force driven
 - ~1.5μm overlay alignment over 200mm wafer
- Full inorganic imprint resist (NanoGlass®)
 - Good etch resistance, thermal stability, optical transparent and UV stable
 - Stamp lifetime > 500 imprints for sub-50nm patterns

Variety of patterns

DOEs on glass and COP

- Dot pattern generation
- Tape test passed on COP and glass
- ~1 micron high patterns
- Curtesy to CDA GmbH Germany

Substrate Conformal, self cleaning, stamp lifetime >500 imprints

SCIL Tooling

AutoSCIL

- Fully integrated system including all process steps: wafer handling, aligning, spin-coating, SCIL imprint, baking and cooling.
- Specifications:
 - 75, 100, 150, 200mm wafers
 - 30-60 waf./hr using NanoGlass UV & thermal curing
 - Wafer scale overlay alignment

LabSCIL

- Stand-alone SCIL imprint unit for R&D and low volume production
- Specifications:
 - Processing: 100, 150, 200mm wafers
 - Low volume
 - UV & thermal curing
 - Wafer scale overlay alignment

Stamp making tools

- Stamp Making Tool to make SCIL composite stamps
- Specifications:
 - Size: 2", 3", 100mm, 150mm, 200mm
 - Uniform heating
 - Manual and semi automatic tools available

Roadmap stamp tooling

- 300mm semi-automatic stamp making
 - Compact stand alone
 - Increased level of automation
 - Extensive logging for quality control
 - Enhanced thermal control
 - Absolute
 - Uniformity
- Fully automatic stamp making
 - 200 and 300mm stamps
 - Library of masters
 - Finished stamp in clean box out
 - ~4 stamps / h

Available in 2022

Available in Q1 2020

Roadmap SCIL Imprint tooling

AutoSCIL300

- 200mm & 300mm wafers
- Automatic stamp loading
- Available Q2 2020

200/300mm imprint module

200/300mm cluster tool with two imprint modules

Inorganic functional optical materials

Directly patterning optical materials – new range in refractive index

- All resist types are fully inorganic
 - Index range n=1.17 to **2.1**
 - Robust
 - Non-absorbing down to λ ~**360**nm
 - Temperature stable >400°C
- Low shrinkage <10%
- For metasurfaces / flat lenses
- Key figure or merit: nm-reproducible features

Slanted grating imprint in NanoGlass T-1250

Stamp lifetime > 100 imprints proven. Expect to reach same as binary ~500

Slanted grating imprint in NanoGlass high index (n=1.8)

Period: 600nm 450nm 300nm

Slightly more shrinkage than T-1250, developments to reach n> 1.8

Pattern uniformity evaluation

CD-SEM pattern evaluation in cooperation with CEA / Leti

- Single, dense, ~40nm to micro's
- Hole arrays 52nm diameter, 120nm deep
- Imprints 1 through 20 of 3^e X-PDMS stamp from the master \rightarrow ~1nm variations

29 different hole diameters on the master

Conclusions

- SCIL provides NIL based high volume production solutions up to 300mm (2020 Q2)
- Cost effective solution due to optimized combination of tool, process and materials
- Direct replication of complex sub-micron patterns in inorganic optical materials is key enabler for nano-photonics – from low to high index
- We work with customers from: proof of concept to pilot-volumes and transfer to high production

Master Replication with Precision

Nanoimprint solutions

Print to print variation, sub-50nm patterns

- Product performance highly sensitivity to pattern size
- There is pattern size variations in the master pattern
- We want to know the SCIL induced variation

Measurements:

- 13 locations over a 200 mm wafer
- 5 imprinted wafers (from batch of 25)
- Sub-50nm patterns

Results:

- Spread is nicely grouped
- Each site is consistent
 - print to print
 - stamp to stamp

13 locations over a 200mm wafer

200mm wafer, 16 markers

Overlay result 200mm

- Blank wafer
- Imprint 1st layer
- Coat with high index for contrast
- Align and imprint 2nd layer
- Used thermo cycling (worst case)
- Observation:
 - Magnification error
 - Pattern shift
- Initial results OK
- Aim to go below 1 mu

High SiO_2 density @ RT \rightarrow Low shrinkage

SEM cross section of sol-gel grating on silicon

├ 84.9 nm

79.1 nm

As imprinted (RT) = 73% dense silica

200 °C = 84% dense silica

1000 °C = 100% dense silica

Shape retention

Nanoimprint solutions

UV curing fully organic imprint resist (under development)

- Some processes require a fully organic imprint resist
- PDMS stamp compatible
- Layers from 100nm to ~50 micron
- Non-absorbing for visible light
- Refractive index ~n=1.6

Last year achievements

- Two tools installed @ customers
 - AutoSCIL150: 3", 4" and 6" wafers
 - AutoSCIL200DS: 200mm wafers with overlay alignment
- Equipment development:
 - LabSCIL200: Stand alone 200mm imprint tool
 - AutoSCIL300: 300mm SCIL tooling
- Stamp manufacturing
 - Semi-automatic tooling available from now
 - Started development of fully automatic tooling
- Wafer scale overlay alignment successfully introduced:
 - Initial overlay X, Y ~1 μm (3-sigma)
 - Front-to-front and front-to-back
 - < 6 sec. for fully automatic alignment</p>
- Materials
 - Fully inorganic, light & temperature stable
 - Low & high index
 - Silica NanoGlass thickness range increased up to 2μm

Sampling and process development

From low to high volume production

This presentation was presented at EPIC Meeting on Wafer Level Optics 2019

HOSTED BY

DINNER SPONSOR

GOLD SPONSOR

SILVER SPONSORS

BRONZE SPONSORS

