

PHIX photonics assembly

"VCSEL based solid state LiDAR"

Jeroen Duis CCO

PHOTONIC ASSEMBLY

PHIX Mission

PHIX is to become a world leader foundry in packaging and assembly of Photonic Integrated Circuits (PIC's) by supplying PIC based components and modules in scalable production volumes.

- Initiated by LioniX International in 2017
- Started operations in 2018
- Specialized in hybrid PIC assembly and fiber array interfacing

The challenges of PIC packaging

Like in electronic ICs, one could dream of a generic PIC package that can be configured such, that it fits all technologies and all applications, just like electronic ICs that are nowadays in almost every electronic device...

However... there are some major differences between ICs and PICs...

Why is photonic assembly different from electronic assembly?

Electronic assembly:

- Established semiconductor component supply chain (IC foundries, test houses, IC-packaging houses)
- Established PCB/flex/ceramic population supply chain; only electrical interfaces
- Established packaging and assembly equipment options
- Many low, medium and high volume contract manufacturing companies
- Established interfaces between supply chain partners (specs, yield, performance)

Photonic assembly:

- Multiple Photonic IC technologies, not compatible with each other
- No standard PIC *component* packaging available (in reference to IC packages)
- Additional parts needed for optical interfaces (fibers, lenses, isolators); both optical and electrical interfaces
- Complex optical interfaces which require submicron alignment
- No standard substrates (vs. PCB, Flex); custom submounts and MOBs (micro-optical-bench)
- No clear interfaces established (e.g. performance bare PIC vs. performance packaged module)
- Packaging challenges compare better with micro-assembly of multicomponent sensor products than with semiconductor component packaging or electronic assembly

Competencies

- Die preparation
- Die alignment and bonding
- Electrical interfacing
- Thermal Packaging
- (Polarization Maintaining) Fiber Arrays
- High Power
- Free Space packaging
- Hybrid assembly

Tunable laser application

	Tuning range	Tuning speed	Linewidth	Output Power	Size
Tunable laser Module 25 kHz	C-band (40nm)	1 kHz	< 25 kHz	10mW	3x2x1 cm
Tunable laser Module 5 kHz	C-band (40nm)	1 kHz	< 5 kHz	10mW	3x2x1 cm
Tunable laser Module 1 kHz	C-band (40nm)	1 kHz	< 1 kHz	10mW	3x2x1 cm

Latest result: extremely small bandwidth (290 Hz) with 13 mW power in output fiber, >80 nm tunability

"290 Hz Intrinsic Linewidth from an Integrated Optical Chip-based Widely Tunable InP-Si3N4 Hybrid Laser", Y. Fan et al, post deadline oral presentation, CLEO USA, San Jose, (CA), 14-19 May 2017

Supporting assembly of 3 major PIC platforms

Automotive struggle

- Solid State / moving parts
- Resolution
- Refresh time
- Distance measurement (time) + Speed (wavelength) +
- Line scan 2D image
- Output power vs detection sensitivity
- Integrated Photonics, discrete optics, combination
- Introduction into market
- Environmental requirements
- Reliability
- Volume scale up

SOS LAB Co., Ltd.

9

Hybrid Scanning LiDAR SL-1

Gwanghwamun Gate

10

	Α	В	SÅS LÄB		
MOTOR	1EA	N/A	1EA		
MEMS	N/A	1EA	1EA		
	64/128EA	4EA	1EA		
Up to 150 Detection Ra	m 0.1 ange	0.15 ~ 0.6° (H) x 0.25 ° (V) Angular Resolution			
<pre> ± 2 cl Distance Acc</pre>	m curacy	5 ~ 20 FPS Measurement Speed			
120 ° (H) x 2 Field of V	0°(V) iew	110 x 85 x 100 mm Dimensions (WDH)			

Hybrid Scanning LiDAR SL-1

11

Hybrid Scanning LiDAR SL-1

MOTOR	1EA	N/A	1EA			
MEMS	N/A	1EA	1EA			
LD/PD/ Signal Processing	64/128EA	4EA	1EA			
Up to 150 Detection Ra	m 0.15 ange	0.15 ~ 0.6° (H) x 0.25 ° (Angular Resolution				
< ± 2 cr	n	5 ~ 20 FPS				

Distance Accuracy

120 ° (H) x 20 ° (V) Field of View

Α

B

12

Hybrid Scanning LiDAR

3D Perception S/W

5 ~ 20 FPS Measurement Speed

110 x 85 x 100 mm Dimensions (WDH)

True Solid-State LiDAR The LiDAR (ML-1)

Bulk Optics (Lens/Mirror) + Mechanical Rotator

Matrix Addressable VCSEL The LiDAR (ML-1)

Addressable Multi-Beam

			Ĵ		ļ				
		٥,							
							>< >>		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000000 00000000000 000000000000 0000		
		000000000 000000000 000000000							
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\circ	
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000 000000000 000000000000000000		000000 000000 000000		000000 000000 000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	

Incredible Power _{For} Wide Angle & Long Range

Matrix Addressable VCSEL The LiDAR (ML-1)

Individually Controllable

Incredible Power _{For} Wide Angle & Long Range

Beam Collimation & Steering Component The LiDAR (ML-1)

MicroLens for **Collimation**

MicroPrism for Steering

Beam Collimation & Steering Component The LiDAR (ML-1)

Collimation + Steering

High Power VCSEL integration challenges

- VCSEL power requirements feed 90V-30A
- Thermal management
- Placement of individual chips / wafer parts
- Hight tolerance stacking, VCSEL aperture, Lens, Prism
- Prism alignment <1 micron

Where can we support you

Jeroen Duis

j.duis@phix.com

This presentation was presented at EPIC Meeting on LIDAR Technologies for Automotive 2019

