Forschungsfabrik Mikroelektronik Deutschland

Fraunhofer Group for Microelectronics in Cooperation with Leibniz Institutes FBH and IHP

FMD Facts – A Short Overview

7

München

Within the FMD more than 2.000 scientists work together under a single, virtual roof.

Total investment of 350 Mio. EUR for additional infrastructure and future developments.

SPONSORED BY THE

Federal Ministry of Education and Research

A cooperation of

15.11.2019

Freiburg

Vehicle Environment Recognition

- Lidar
- RADAR
- Camera
- Sensor Data Fusion
- Integration Technologies

LiDAR R&D activities of FMD

- Expertise along the entire value chain of a LiDAR system, especially components:
 - Laser sources
 - Sending and receiving Optics
 - Micromirrors
 - Detectors
- LiDAR system approaches
 - MEMS-based scanning LiDAR
 - Flash LiDAR
 - OPA
- Wavelengths
 - 905nm as well as 1550nm

LiDAR Expertise along the entire value chain

A cooperation of

LiDAR @ Component Level Laser sources

- Next generation LiDAR laser source for line scanners at 905 nm
 - 600 W LiDAR module
 - high pulse power laser source with a 48-emitter diode laser bar
 - 4-10 ns pulses with >600 W pulse peak power at 905 nm
 - wavelength shifts with temperature by 0.06 nm/K only
 - bar is electrically driven by a new in-house developed high-speed GaN driver providing current pulses of up to 800 A
 - wavelength is stabilized by integrating distributed Bragg reflectors
- InP diode lasers at 1500 nm
 - BA-lasers: cw operation: 5 W; pulsed operation: 16 W (300 ns)
 - Coherent light source and tunable lasers for beam steering for FMCW LiDAR
 - 3 ns pulses and 50W optical power/single BA device expected
 - Vertically stacked active layers will enable even higher optical powers

© FBH/Schurian

A cooperation of

🖉 Fraunhofe

LiDAR @ Component Level Laser sources

Laser sources at 905 nm

	1 emitter		3 emitter (beams combinable)		8 emitter (bar)		48 emitter (bar)	
repetition frequency / kHz	10		10		10		10	
pulse width/ns	5		5		2	5	2	5
temperature/°C	25	85	25	85	25		25	
max. pulse current/ A	110	110	190	190	170	410	600	900
max. peak power/W	40	35	100	85	120	180	400	600
pulse energy/nJ	200	175	500	425	240	900	800	3000
wavelength/nm	905	909	905	909	905		905	

Christoph Galle

LiDAR @ Component Level MEMS scanners

- ID and 2D scanning devices (arrays possible)
 - Resonant and quasistatic deflections
 - Drive mechanisms are designed application-specific:
 - Electrostatic, piezoelectric, magnetic
 - Optical scan ranges: 0.1° up to 180°
 - Mirror diameters: 0.5 mm 50 mm
 - Scan frequency: 0.1 Hz 100 kHz
 - Fatigue free, high temperature resistant, highly reflective coatings (R>99%)
 - Fabrication: qualified, fully CMOS-compatible bulk micromachining process suitable for mass fabrication
 - Scanners can be vacuum packaged at the wafer level by hermetic encapsulation with inclined glass caps

© Fraunhofer IPMS, ISIT

LiDAR @ Component Level Silicon detecotors

- Single Photon Avalanche Diode (SPAD) arrays at 905 nm
 - Avalanche photodiode operated in Geiger-Mode
 - Very few photons can be detected
 - High spatial resolution and on-chip signal processing (AI on chip)
 - High volume production at low cost (CMOS)
 - Background light suppression
 - Backside Illuminated SPAD arrays:
 - High density CMOS readout circuit
 - Wafer to wafer bonding process for high volumes
- Silicon Photomultiplier (SiPM) at 905 nm
 - Avalanche photodiodes in Geiger mode
 - High gain and single-photon resolution
 - CMOS integration allows on-chip pre-amplificaton and small arrays of SiPMs

© Fraunhofer IMS, EMFT

LiDAR @ Component Level III/V semiconductor detectors

- InGaAs-based APDs (SWIR) at 1550 nm
 - High-resolution InGaAs APD focal plane arrays
 - 640 x 512 pixels
 - Spectral sensitivity up to 1650 nm
 - Operation in proportional mode
 - Internal signal amplification (gain)
 - Design of coherent photodetectors, needed for FMCW or phase shift LiDAR
 - Monolithic integration of SWIR detectors and the corresponding laser source
 - Laser gated viewing systems (Flash LiDAR)
 - Maximum Range > 1 km
 - Distance resolution < 1 m
 - Lateral resolution > VGA

© Fraunhofer IAF

A cooperation of

Christoph Galle

Complementary Competencies: Sensor Data Fusion

- Multi-Sensor Fusion (LiDAR, RADAR, Camera,...)
- Environment perception for autonomous vehicles
- Sensor Cloud (BDC Web)
 - Storage and management of position- and time-synchronous data
 - Automated algorithms for data analysis and data elevation
- FLLT LabelingToolchain:
 - Automated labeling of point clouds and training data for AI
 - The larger the data pool, the better the computer system can learn \rightarrow automated labeling
 - Web-based solution for the labeling process (data overview, data review, data labeling)

© Fraunhofer IOSB

A cooperation of

Christoph Galle

Complementary Competencies: Integration Technologies

Forschungsfabrik Mikroelektronik

- 3D integration technologies for LIDAR
 - 3D IC Technology with TSV and RDL
 - Wafer Level Packaging & Assembly
- SPAD on CMOS integration
 - 3D-SPAD with 40 μm pitch
 - Wafer processing with TSVs, RDL, bumping and flip chip assembly of thin SPADs
- SiPM integration
 - Edgeless design with high voltage isolation
- Optical and thermal design, simulation and measurement techniques
- Thermo-mechanical design, simulation and measurement techniques
- Wafer Level Optics Integration
 - Vacuum packaging by hermetic encapsulation with inclined glass caps

© Fraunhofer IMS, ILT

Fraunhofer

MIKROELEKTRONIK

LiDAR New approaches

Scanning-LiDAR - Hybrid Integration Concept

- Based on Hybrid Photonic Integrated Circuits (Hybrid PICs)
- Strength: Low upfront development effort, short iteration cycles
- Optical circulator: separation of emitted and received light
- Phased array: non-mechanical beam steering
- Vertical coupler: non-mechanical beam steering

© Fraunhofer HHI

Single Photon Avalanche Diodes

- Wafer-2-Wafer-Bondig → separate manufacturing of SPAD and ROIC + higher fill factor
 - Advantage: separate optimization of SPAD and ROIC
- 2D Focal-Plane Arrays

MEMS scanners

- Improvement of drive mechanisms (piezo, magnetic) \rightarrow quasistatic modules with high precision
- High optical scan angles → 180°
- Miniaturized & hybrid sensor module
 - 79 GHz Radar & Camera

Our Invitation to Cooperate: Services of FMD

- Industrial contract research
 - R&D-Projects
 - Feasibility studies
 - Technology and process development
 - Pilot fabrication
- Services for manufacturers
 - Demonstrators and prototypes
 - Technology services
- Technology transfer
 - Licensing of technologies and processes
- Cooperative projects
 - R&D projects jointly funded by public and industrial sources

RADAR Testing of Radar Systems

Forschungsfabrik Mikroelektronik Deutschland

ATRIUM

- Automotive test environment for radar in-the-loop testing and measurements
- Radar target simulator in the E-band
- Full simulation of critical traffic scenarios
- Testing of mounted automotive radar sensors:
 - New radar technologies and sensor concepts can be tested
 - Effects from long-term use of a vehicle or damage
 - Designed for a high throughput of automotive radar sensors and can therefore be used by technical inspection organizations damage to the vehicle
- Reliable qualification of automobile radars
- Facilitating the control of the functionality of the next generation of automotive radar sensors

© Fraunhofer FHR

A cooperation of

15.11.2019

- Goals of R&D project "KameRad"
 - Development of a miniaturized & hybrid sensor module
 - Combined Camera and Radar module: 79 GHz Radar & Camera
 - Sensor fusion (hardware & software)
 - Decentralized computing platform with sufficient computing power for deep learning
 - Interface for Car-2-X- communications and GPS
 - Unit size: no bigger than a smartphone
 - Reaction time of less than 10 milliseconds
 - Integrated signal processing capacity allowing all processing to take place directly within the module

© IZM//Volker Mai

This presentation was presented at EPIC Meeting on LIDAR Technologies for Automotive 2019

