Applications of Broadly Tunable MEMS-VCSELS

Peter J.S. Heim

October 18, 2019

Serving the Intellectually Curious

Thorlabs

- Corporate Headquarters: Newton, NJ
- ~ 2000 employees globally
- Company type: Private

Alex Cable - President & Founder

Thorlabs - Manufacturing

Thorlabs Sites Worldwide

Serving customers globally from 13 locations in 9 countries

Thorlabs Quantum Electronics

Thorlabs Quantum Electronics

Guilford Road 40,000 sqft

• 21,000 sq. ft of Clean Room

Stayton Drive 43,000 sqft

- 4,000 sq. ft of MOCVD Clean
- 14,000 sq. ft of Wafer Fab Clean Room planned
- State-of-the-art semiconductor manufacturing facilities dedicated to OEM and catalog customers.
- $\checkmark\,$ Staff of 160: 40% with PhDs or MS
- ✓ EPI thru Wafer FAB to full module production
- ✓ InP, GaAs, GaSb and LiNbO₃ device fabrication capability.

✓ ISO 9001:2015 certified

Semiconductor Lasers from 0.7 μm to 13 μm

Vertically Integrated Manufacturing

Broad Range of Semiconductor Products

Serving Broad Range of Customers

TELECOM

- Gain Chips
- Tunable lasers
- LiNb03 Modulators
- Semiconductor Optical Amplifiers

MEDICAL

- MEMS VCSEL Tunable Laser for OCT
- Gain elements for tunable lasers
- Super Luminescent Diodes
- InP and GaAs Laser Diodes

DEFENSE

- QCL/ICLs
- LiNbO3 Modulators
- Laser Diodes
- Test Targets

SENSING

- High-speed Optical Amplifier Switches (NIR): Cavity ring-down sensors
- High Power laser diodes 780 nm: Raman spectroscopy or other remote sensing
- QCL/ICLs for trace gas sensing

Tunable MEMS-VCSEL: Optically Pumped

Page 10 - THORLABS

MEMS-VCSEL

Product Test Data Sheet

1300 nm Swept Wavelength **VCSEL Sub-Module**

S/N: 002 Test Time: 05/17/2012

Tested By: Phong

QA: Passed

THORLARS

OEM-100-0140

Summary of Test Conditions (Tycsel, Tpump = 25°C)

Parameter	Symbol	Value	Unit
Pump Current	Lop	160	mA
DC Bias	VDC	8	v v
Modulation Amplitude (sine wave)	Vpp	22.8	
Drive Frequency	fop	200	kHz

Summary of Test Results

Parameter	Symbol	Value	Unit
Optical Bandwidth	BW	101	nm
Optical Power (Average)#	Pop	140	μW
Power Ripple ⁺	δP	0.9	96
Polarization Switching*	PS	PASS	P/F
Resonance Frequency	FRES	325	kHz
Free Spectral Range	FSR	1244-1359	nm
Static Measurements			
Min Static Power ^a	PDC	80	μW
Min Static SMSR ^x	SMSRpc	52	dB
[#] Optical Power Increase ~ 1%	°C for TycseL at	lop	

Absolute Maximum Ratings¹

Parameter	Ratings	Unit
Bandwidth	115	nm
Pump Current**	200	mA V
DC Bias ²	70	
Modulation Amplitude	70	V
Case Temperature	15~+30	°C
Drive Frequency	500	kHz
** Submodule 002 Uses a Higher	Current Pump Laser	

Page 12 - THORLABS

MEMS-VCSEL Swept Source Module

	Symbol	Min	Typical	Max
Center Wavelength	λ _c	1280 nm	1300 nm	1320 nm
Tuning Range (-10 dB)	Δλ	95 nm	100 nm	
Average Output Power	Po	20 mW	30 mW	
Duty Cycle (Unidirectional Sweep)	D	40	70	
Coherence Length	L _{Coh}		> 100 mm	
Scan Linearization Ratio (max/avg)	SLR			1.5
Side Peak Suppression Ratio	SPSR	50 dB		
Relative Intensity Noise (RIN) – Ortho-RIN	RIN_{ORTHO}			2%
Sweep Rate (examples)	R _{sweep}			
P/N SVM130-XXXX			50 kHz	
P/N SVM131-XXXX			100 kHz	
P/N SVM132-XXXX			200 kHz	
P/N SVM134-XXXX			400 kHz	

MEMS-VCSEL Swept Source Module

	Symbol	Min	Typical	Max
Center Wavelength	λ _c	1280 nm	1300 nm	1320 nm
Tuning Range (-10 dB)	Δλ	95 nm	100 nm	
Average Output Power	Po	20 mW	30 mW	
Duty Cycle (Unidirectional Sweep)	D	40	70	
Coherence Length	L _{Coh}		> 100 mm	
Scan Linearization Ratio (max/avg)	SLR			1.5
Side Peak Suppression Ratio	SPSR	50 dB		
Relative Intensity Noise (RIN) – Ortho-RIN	RIN_{ORTHO}			2%
Sweep Rate (examples)	R _{sweep}			
P/N SVM130-XXXX			50 kHz	
P/N SVM131-XXXX			100 kHz	
P/N SVM132-XXXX			200 kHz	
P/N SVM134-XXXX			400 kHz	

Optical Coherence Tomography

Huang, et al, Science, 1991

"A technique called optical coherence tomography (OCT) has been developed for non-invasive crosssectional imaging in biological systems. OCT uses low-coherence interferometry to produce two-dimensional images of optical scattering from internal tissue microstructures"

- ~ 30 Million OCT imaging procedures annually
- OCT system market approaching \$1B per year

Swanson and Fujimoto, Biomedical Optics Expr., 2017

Evolution of OCT

Sensitivity Roll-off in Spectral Domain OCT

Page 17 - THORLABS

Increased Imaging Depth with SS-OCT

Short Cavity Laser vs Tunable VCSEL

Drastic Increase in Imaging Depth with MEMS-VCSEL

Potsaid, et al, Proc. of SPIE, (2012)

MEMS-VCSEL Ideal Swept Source for OCT

Fundamental Performance Advantages

- Wide Tuning: Short micron scale cavity creates large mode spacing (FSR) and wide fractional continuous single-mode tuning range >10%.
- Fast Tuning: Small mirror mass and adiabatic tuning enable >2 MHz tuning speeds over full tuning range.
- Variable Speed: Engineered air damping provides flat mechanical frequency response.
- Narrow Linewidth: Short cavity produces single mode operation and >100 meter dynamic coherence length. Significant for anatomic imaging, metrology, and LIDAR.
- Wavelength Flexible technology from 650-5000 nm using InP, GaAs, GaSb based gain regions.
- Low-cost enabled by wafer-scale fabrication and test.

Application Area - Opthalmology

- Worldwide the largest market for OCT
 - 10,000's systems sold annually
 - 10,000,000's procedures annually
- OCT can be particularly helpful in diagnosing
 macular degeneration (AMD), detachments of the
 neurosensory retina and retinal pigment epithelium,
 optic nerve disorders such as glaucoma.

Courtesy of Thorlabs Lübeck

Page 22 - THORLABS

Application Area - Cardiovascular

Alfonso et al. J. of Invasive Cardio. (2013) Jia et al. J. of American Col. Of Cardiology, (2014)

www.brittanica.com

Other Developing Medical Application Areas

- Gastrointenstinal
- Dermatology
- Dental
- Brain Imaging
- Kidney Transplant Evaluation
- Bone Imaging

Non-Medical Applications - Pharmaceuticals

OCT can be useful to determine:

- coating thickness
- inter and intra-coating homogeneity
- defects in substrate and coating

cracked coating

Koller et al., European Journal of Pharmaceutical Sciences (2011)

Meter Range OCT

Detection

I & Q Detection

20GHz bandwidth 50GSPS Scope

Imaging Cubic Meter Volume with Micron Resolution

Zhao Wang, et al, Optica, (2016)

Gas Sensing: 3.0 – 3.5 um

Moving to the Mid-IR: ARPA-E Monitor Program

Room Temp CW Operation Demonstrated: Feb 2018

Optically-pumped VCSEL Device Structure

Key features:

- GaSb-based core grown via MBE
- Superlattice at top and bottom of structure can be left intact, or sacrificially etched to adjust mode position for optimal overlap of standing wave peaks with QWs

Wide Tuning Across Wafer Variation

Room Temp CW Electrical Pumping: CLEO Europe 2019

3.3 um eVCSEL

- Successfully demonstrated RTCW eVCSEL at 3.343 um with maximum CW lasing temperature of 26C.
- Employed wafer-bonded GaAs/AlGaAs bottom mirror, 10 ICL stages in GaSb-based active region, and top deposited ZnSe/ThF4 mirror.
- Optical spectra appear single mode with tens of microwatts output power.
- No current aperture was employed resulting in at least 2/3 of current being wasted outside optical mode.
- Thermal tuning of 1nm/mA via bias current injection could enable methane detection.
- Next steps are increasing output coupling for more power, reducing wasted current to drop threshold, and incorporating MEMS tuning.

Electrically Pumped MEMS-VCSEL (eVCSEL)

Electrically-Pumped MEMS-VCSEL

- Wafer-Scale Monolithic MEMS-VCSEL Chip
- 1060 nm CWL with >60 nm Tuning Range
- Co-Packaged with Optical Amplifier
- Output Power: >15 mW
- 14-Pin Butterfly Package

Idea in the Works! Hungry for Your Thoughts

THORLABS

Initial eVCSEL Testing

Electrically-Pumped MEMS-VCSEL

- Wafer-Scale Monolithic MEMS-VCSEL Chip
- 1060 nm CWL with >60 nm Tuning Range
- Co-Packaged with Optical Amplifier
- Output Power: >15 mW
- 14-Pin Butterfly Package

Idea in the Works! Hungry for Your Thoughts

800 kHz A-scan rate

Additional MEMS-VCSEL Requirements

- Reproducible oxidation of fully-oxidized semiconductor mirror: needed for broad tuning
- Precise centering of broadband dielectric mirror: needed for broad tuning
- Precise control of MEMS release layer: control zero-voltage wavelength
- Heterogeneous integration of diverse materials (including wafer bonding)
- Complex processing (~15 mask levels)
- Assembly processes (e.g. die bonding) can change performance from waferlevel testing
- Optical pumping: increases complexity of all test steps, including burn-in

Future challenge → Cost Reduction

- Many OCT and spectroscopy applications can scale to much larger markets if laser costs can be significantly reduced (10x – 100x)
- Monolithic MEMS-VCSEL has inherent capability to scale to lowest cost through wafer-scale integration
- Electrically-Pumped MEMS-VCSEL with same performance as current oVCSEL
- Low-cost packing: integration with OCT and wavelength control elements

Acknowledgments

Vijaysekhar Jayaraman Demis D. John Christopher Burgner

Ben Potsaid James Jiang Jens Peupelmann Anjul Loiacono Alex E. Cable

James G. Fujimoto Tsung-Han Tsai Hsiang-Chieh Lee Osman O. Ahsen Zhao Wang Jonathan J. Liu Ireneusz Grulkowski

This presentation was presented at EPIC Meeting on VCSELs Technology and Applications 2019

HOSTED BY

SONY **GOLD SPONSOR** SILVER SPONSOR PIXAPP Photonic Packaging **Pilot Line BRONZE SPONSOR** PHOTONICS²¹ EU initiatives funded by www.photonics21.org