ABOUT A VCSEL: CORE COMPONENT OF A LIDAR SENSOR FAMILY

Dr. Eckart Gerster SICK AG 2019-10-18

- Introduction to SICK AG
- Product Portfolio
- VCSELs for LiDAR
- Challenges

INTRODUCTION TO SICK AG SICK AT A GLANCE (2018)

INTRODUCTION TO SICK AG PRESENCE WORLDWIDE

INTRODUCTION TO SICK WIDE PRODUCT RANGE

- Analyzer solutions
- Automation light grids
- Detection and ranging solutions
- Distance sensors
- Dust measuring devices
- Encoders and inclination sensors
- Fluid sensors
- Gas analyzers

- Identification solutions
- Magnetic cylinder sensors
- Motor feedback systems
- Opto-electronic protective devices
- Photoelectric sensors
- Proximity sensors
- Registration sensors

- Software products
- Safety switches
- sens:Control safe control solutions
- System solutions
- Traffic sensors
- Ultrasonic gas flow measuring devices
- Vision

2D AND 3D LIDAR SENSORS

Short, medium, and

long working ranges

Indoor or outdoor

High resolution

Industrial grade

2019-10-18 SICK AG | EPIC Meeting on VCSELs Technology and Applications | Confidential

TIM POWERED BY VCSEL

- TiMxxx: ToF LiDAR sensor, compact size, low power, low cost, VCSEL powered
- Sick's HDDM/HDDM+ technology (High Definition Distance Measurement, a proprietary statistical measurement method)
- ToF LiDAR system design optimizes angular resolution, measurement range, accuracy, etc.

- testing on-wafer
- no cleaving and facet coating (no COMD risk)
- simple packaging (SMD, ...)
- circular beam shape
- Iow temperature sensitivity
- short pulse capability
- Iow cost
- low brightness
- power scaling difficult

d-ToF LiDAR requires very short optical pulses with very high pulse power!

Parameter	Symbol	Unit	Min	Тур	Мах	Notes
Wavelength	λ_{OP}	nm	845	850	855	
Temperature	T _c	°C	-10		85	Case temperature during operation
Emitters	n		1		7	
Emission Area	Ø	μm		60	75	Minimal circle including all emitting area
Divergence	α	0		20	25	CW and pulsed operation
Slope Efficiency	SE	mW/mA		0.8	1	
Package	l x w	mm x mm			3 x 2	Optimized thermal conductivity
Reliability	λ	FIT			60	Confidence level: 60%

Pulse operation:

- Pulse duration: 1 10 ns
- Pulse current: 0.7 1.2 A
- Max duty cycle: 0.75 %
- Maximum average current: 5 mA
- Maximum voltage drop over diode: 17 V

Issue: Large emitter diameter contrast to Large quality and divergence due to beam quality and current spreading! limited internal current spreading!

Parameter	Symbol	Unit	Min	Тур	Мах	Notes
Wavelength	λ_{OP}	nm	845	850	855	
Temperature	T _c	°C	-10		85	Case temperature during operation
Emitters	n		1		7	
Emission Area	Ø	μm		60	75	Minimal circle including all emitting area
Divergence	α	0		20	25	CW and pulsed operation
Slope Efficiency	SE	mW/mA		0.8	1	
Package	l x w	mm x mm			3 x 2	Optimized thermal conductivity
Reliability	λ	FIT			60	Confidence level: 60%

Pulse operation:

- Pulse duration: 1 10 ns
- Pulse current: 0.7 1.2 A
- Max duty cycle: 0.75 %
- Maximum average current: 5 mA
- Maximum voltage drop over diode: 17 V

VCSEL RELIABILITY: VERIFICATION EXAMPLE

144 DUTs, t=10.7kh, E_a=0.35eV, CL=60% \rightarrow **116 FIT**

Test condition: 0.7A, 5ns pulse, 660ns repetition, 85°C

Parameter	Symbol	Unit	Min	Тур	Мах	Notes
Wavelength	λ_{OP}	nm	845	850	855	
Temperature	T _c	°C	-10		85	Case temperature during operation
Emitters	n		1		7	
Emission Area	Ø	μm		60	75	Minimal circle including all emitting area
Divergence	α	0		20	25	CW and pulsed operation
Slope Efficiency	SE	mW/mA		0.8	1	
Package	l x w	mm x mm			3 x 2	Optimized thermal conductivity
Reliability	λ	FIT			60	Confidence level: 60%

Pulse operation:

- Pulse duration: 1 10 ns
- Pulse current: 0.7 1.2 A
- Max duty cycle: 0.75 %
- Maximum average current: 5 mA
- Maximum voltage drop over diode: 17 V

more pulse power needed!

pulse current of >5A possible? (@0.1% dc)

2D LIDAR \rightarrow 3D LIDAR

3D LiDARs with many layers require many VCSELs...

MANY THANKS FOR YOUR ATTENTION.

This presentation was presented at EPIC Meeting on VCSELs Technology and Applications 2019

HOSTED BY

SONY **GOLD SPONSOR** SILVER SPONSOR PIXAPP Photonic Packaging **Pilot Line BRONZE SPONSOR** PHOTONICS²¹ EU initiatives funded by www.photonics21.org