

Progress in non-polar and semipolar GaN VCSELs

Tal Margalith

Solid-State Lighting and Energy Electronics Center (SSLEEC)

UC Santa Barbara

EPIC Meeting on VCSELs 17-18 October, 2019

SSLEEC: Premier GaN Research Center

- 9 Faculty Members
- >50 Engineers, Postdocs, and Ph.D. Students on GaN
- 4 dedicated staff
- 8 Industrial Member Companies

UC SANTA BARBARA

Solid State Lighting & Energy Electronics Center

SSLEEC: Application-Driven Research

UC SANTA BARBARA

Solid State Lighting & Energy Electronics Center

Research Thrusts

- Optoelectronics
 - Platform Technologies
 - Tunnel Junction devices
 - Broadening the GaN Spectrum
 - UV, Green, Amber LEDs
 - Application-Driven Functionality
 - HP Lasers / Laser Lighting
 - LiFi Emitters and High-Speed Photodetectors
 - LIDAR
 - Performance at a Small-Size Scale
 - µLEDs for Display, AR, and VR
 - VCSELs

Solid State Lighting & Energy Electronics Center

• III-N-Based RF/Power Electronics

State of the Art VCSEL

Advantages

- Short cavity = single frequency
- No substrate removal or thinning

Disadvantages

- Very long growth time (~12 hrs)
- Narrow DBR stop band = low MFG yield
- Poor lateral mode control with wider apertures
- Neither DBR permits heat flow

(Stanley Elec., Meijo Univ.), Kuramoto, et al., Proc. SPIE vol. 11145, 1114501-73 (2019)

UC SANTA BARBARA

State of the Art VECSEL

p+-GaN p-GaN InGaN/GaN 3 QWs n-GaN B+ H B+ H B+ H B+ H B+ SiO₂/Ta₂O₅DBR 11 pairs n-electrode NSubstrate SiO₂/Ta₂O₅DBR 14 pairs

15 mW Multimode

Sony H. Nakajima, APEX 12, 084003 (2019)

Solid State Lighting & Energy Electronics Center

Advantages

- Long cavity insures a lasing mode near gain peak
 - Higher MFG yield, looser temp control
 - Wider dynamic range, but NOT necessarily higher power
- No DBR barrier to heat flow
- Mode control in large area VCSEL

Disadvantages

- Mirror alignment with current aperture
- Mirror size may limit array density
- Long photon lifetime limits modulation speed
- Substrate thinning or transfer needed

UCSB Focus: Nonbasal, Polarized VCSEL

Advantages

- Polarized output locked to crystal axis
- Higher gain coefficient than c-plane

Disadvantages

- Substrate removal needed
- Poor lateral mode with wider apertures (parallel mirrors)
- Neither DBR permits heat flow

UCSB Holder, Appl. Phys. Lett. 105, 031111 (2014)

UCSB Focus: Nonbasal, Polarized VCSEL

UCSB Holder et al., APL 105, 031111 (2014) J. Leonard, <u>III-N VCSELs</u>, Dissertation (2016)

445 nm Semipolar TJ VCSEL with Ion-Implanted Aperture

- Tunnel junction intracavity current spreader
- 12 µm ion-implanted aperture, single transverse mode
- Poor bond-> limited to 50% duty cycle

Kearns, et al., Optics Express 27, 23707 (2019)

445 nm Semipolar TJ VCSEL with Ion-Implanted Aperture

Calculated VCSEL Parameters

Internal Loss: Mirror Loss: Scattering Loss: Injection Efficiency: Topside Emission: **Excess Loss:** $\langle_{i} = 13 \text{ cm}^{-1}$ $\langle_{m} = 3 \text{ cm}^{-1}$ $\langle_{s} = 5 \text{ cm}^{-1}$ $|_{i} = 0.68$ $F_{1} = 0.5$ $\langle_{e} = 7 \text{ cm}^{-1}$

UC SANTA BARBARA

- Tunnel junction intracavity current spreader
- 12 μm ion-implanted aperture, single transverse mode
- Poor bond-> limited to 50% duty cycle

Kearns, et al., Optics Express 27, 23707 (2019)

Loss Analysis

Implant Overlap

- Al ion implantation at 10¹⁴ cm⁻²
- Absorption: 1400 cm⁻¹
- Contribution: 1 cm^{-1} (0.6-2 cm⁻¹)

Metal Overlap

- Ti/Au (20/500 nm)
- Effective Penetration: 100 nm
- $\langle_{Ti}=8.6 \times 10^{5} \text{ cm}^{-1}$
- $\langle_{AU} = 5.4 \times 10^5 \text{ cm}^{-1}$
- Contribution: 6 cm^{-1} (3-12 cm $^{-1}$)

Off-centered optical mode can account for the observed excess loss

UC SANTA BARBARA

Kearns, et al., Optics Express 27, 23707 (2019)

- Buried tunnel junction design avoids implant loss
- Provides optical and current confinement

UC SANTA BARBARA

Kearns et al., PSS-a, in review (2019)

Buried TJ VCSEL

- Buried tunnel junction current and optical aperture
- Implant distant from active region for reduced loss

Kearns et al., PSS-a, in review (2019)

13

Calculated VCSEL Parameters

Internal Loss: Mirror Loss: Scattering Loss: Injection Efficiency: Topside Emission: Excess Loss: $\langle_{i} = 10 \text{ cm}^{-1}$ $\langle_{m} = 2 \text{ cm}^{-1}$ $\langle_{s} = 8 \text{ cm}^{-1}$ $|_{i} = 0.68$ $F_{1} = 0.5$ $\langle_{e} \approx 0 \text{ cm}^{-1}$

- Buried tunnel junction current and optical aperture
- Implant distant from active region for reduced loss

Kearns et al., PSS-a, in review (2019)

BTJ VCSEL Aperture Dependence

- 1/e² lasing area used in J_{th} calculation: all spots apparently pumped the same
- No quantitative explanation for increase in differential efficiency
- Filamentary modes not centered in aperture

Kearns et al., PSS-a, in review (2019)

Nonuniform Current Injection

Semipolar BTJ VCSEL

• Correlation Between Thermal Map and Laser Emission

Future Work

- Manufacturability
 - Tighten processes
 - PEC (substrate removal without roughness)
 - Bonding (voltage)
 - BTJ activation (voltage)
- R&D
 - Determine root cause of filamentation
 - Address intrinsic epi-driven (or contact-driven)
 inefficiency
 - Heat management longer cavity
 - Hybrid approach between best-in-class designs?

Solid State Lighting & Energy Electronics Center

This presentation was presented at EPIC Meeting on VCSELs Technology and Applications 2019

HOSTED BY

SONY **GOLD SPONSOR** SILVER SPONSOR PIXAPP Photonic Packaging **Pilot Line BRONZE SPONSOR** PHOTONICS²¹ EU initiatives funded by www.photonics21.org