

All-in-glass packaging for VCELS and other optical systems in harsh environments

EPIC Meeting on New Space at European Space Agency, September 2019 Ville Hevonkorpi, SCHOTT Primoceler Oy

Klassifizierung

SCHOTT Primoceler Oy: Who are we?

- Glass Micro Bonding specialist founded in 2010 and headquartered in Tampere, Finland
- Joined SCHOTT AG in August 2018
- Pioneering technology: Unique additive-free, room temperature hermetic glass bonding
- Specialized in medical implants, microfluidics, micro-electronics and micro-optics

What is Glass Micro Bonding?

- Laser-based hermetic bonding: extremely precise sealing
- Contactless method: material surfaces are untouched
- Minimal heat load: laser-precision enables a heat-affected zone of just a few micrometers
- **One-step** manufacturing process

Up to the Challenge: SCHOTT Primoceler[™] Glass Micro Bonding is a Proven Superior Alternative to Existing Sealing Methods

	SCHOTT Primoceler™	Anodic bonding	Direct / fusion bonding	Glass frit	Epoxy (UV)	Epoxy (thermal)
Hermetic	Yes	Yes	Yes	No / In rare circumstances	No	No
Sealing Process	No additives	Silicon or metal needed Glass-glass not possible	No additives	Additives needed	Additives needed	Additives needed
Process temperature	Room temperature	440°C (824°F)	1000°C (1832°F) (no plasma) 440°C (824°F) (with plasma)	440°C (824°F)	Room temperature	200°C (392°F)
Clean room class requirement	100 / 1000	100	10	1000	1000	1000
Surface quality required (Ra)	< 10 nm	< 2 nm	< 0.5 nm (no plasma) <2 nm (with plasma)	< 1 um	< 1 um	< 1 um

Gap Control and Additive-Free Technology Enables Higher Reliability for Micro-Optic Applications

SCHOTT Primoceler Glass Micro Bonding

✓ Direct bonding without additive materials✓ No gap between top and bottom substrates

Glass	
	NO gap
Glass/ Si-substrate	

Other Bonding Methods

- Additive materials used for bonding
- Gap between top and bottom substrates
- Controlling the gap is difficult or impossible

Glass Adhesive Glass/ Si-substrate	Gap

Project with the European Space Agency (ESA) Hermetic and Radiation Tolerant Glass Package for VCSELs

- Various glass materials available
- Package solution consists of hermetic Through-Glass-Vias (TGV) and a standard BGA balling
- Challenging the technique by using radiation hard glass, BK7G18

Design result - all-in-glass rad hard package

- Commercially available VCSEL, glass and hermetic TGV
- New glass and via material combination for TGV
- BK7G18 with FeNi42 vias
- Package size 1,5mm x 1,5mm x 0,5mm
- 3-layer structure, BGA

Evaluating thermal performance – Thermal modelling

Assumptions:

- Operating range 5...45°C
- Power dissipation 20mW for all devices
- No forced cooling
- Worst case scenario

Evaluating thermal performance - comparison to other materials

Thermal performance of the package can be easily further improved, for example by:

- Attaching the LGP to a PCB → 46°C
- Including metallized pad on both PCB and LGP → 43°C
- Higher dimension thermal TGV pad below the VCSEL

Full-glass packages enable next generation active medical implants

RF Transparency

Wireless power and data transfer

Biocompatibility*

- No additives or adhesives
- High hermeticity

"biocompatible according to ISO 10993-4 and 10993-5 (non-Hemolytic, non-Cytotoxic)

Room Temperature Process

- Flexible assembly sequence
- Die and wafer level possibility
- Suitable for many coatings and sensitive components

Unmatched Miniaturization: SCHOTT Primoceler[™] all-glass packages come in sizes so small, you have to see it to believe it

Questions?

Full visual inspection can be done with microscopes

Figure: Cross-sectional image of the package.

Figures: Diced devices

Figure: Pre- and post-stress optical pictures.

© SCHOTT Primoceler Oy

This presentation was presented at EPIC Meeting on New Space 2019

HOSTED BY

