QuiX B.V.

Dr. J.J.Renema j.j.renema@quix.nl

QuiX BV

Mission statement: deliver quantum technology solutions based on silicon nitride photonic integrated circuits

Spin-off of University of Twente (Jan 2019). Focused on development and commercialization of Quantum Technology solutions based on silicon nitride PICs.

QuiX BV

Mission statement: deliver quantum technology solutions based on silicon

nitride photonic integrated circuits

Started Jan 2019

Management: JR & Hans van den Vlekkert

Shareholders: academic photonics community

in Twente + UT + Raph2Invest

Photonic quantum technology

- Non-universal quantum computing
- Main applications:
 - machine learning
 - quantum simulation
- Advantages:
 - No cryo
 - High integration with photonic technologies

Boson sampling for molecular vibronic spectra

Joonsuk Huh*, Gian Giacomo Guerreschi, Borja Peropadre, Jarrod R. McClean and Alán Aspuru-Guzik*

Sources

Sources

Sources

Sources

Sources

Quantum simulation with photonics

Quantum simulation with photonics

Quantum simulation with photonics

The product

A box with a power cord, USB cable and fiber sockets

You plug in the box, dial a transformation via USB and the software makes it happen

Why silicon nitride?

THE FASTEST WAY TO A QUANTUM FUTURE

- Low loss (0.1 dB/cm)
- Wide transparency window (425 – 3700 nm)
- Mature technology (Lionix)

Competing photonic technologies Competing photonic technologies

- Key parameter is optical loss
- SiN wins in elements per loss length

Track record

8×8 Programmable Quantum Photonic Processor based on Silicon Nitride Waveguides

Caterina Taballione¹, Tom A. W. Wolterink², Jasleen Lugani², Andreas Eckstein², Bryn A. Bell², Robert Grootjans³, Ilka Visscher³, Dimitri Geskus³, Chris G. H. Roeloffzen³, Jelmer J. Renema⁴, Ian A. Walmsley², Pepijn W. H. Pinkse⁴ and Klaus-Jochen Boller¹ ¹Laser Physics and Nonlinear Optics (LPNO), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands. Tel: +31 53 489 5278, e-mail: c.taballione@utwente.nl ²Ultrafast Quantum Optics and Optical Metrology, University of Oxford, Clarendon Laboratory, Parks Road,

Oxford OX1 3PU, UK ³Lionix International BV, PO Box 456, 7500 AL Enschede, The Netherlands

⁴Complex Photonic Systems (COPS), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Started 1/4/2019 as first employee

Proof of principle experiments

(a)

Bosonic coalescence/anti-coalescence

(c)

Proof of principle experiments

Metrics / goals

```
# of photons -> quantum computational power

# of modes -> number of photons you can support

Optical loss -> degree of 'quantumness' of the computation
```

Technological development plan

- Push on 3 fronts:
 - Transmission: up from 40% to >80%
 - # of modes: up from 8 to 20 to 50
 - Programmability: from partial to full

This presentation was presented at EPIC Meeting on New Space 2019

HOSTED BY

European Space Agency

SILVER SPONSORS

EU initiatives funded by www.photonics21.org

