

SWIR imaging and space applications

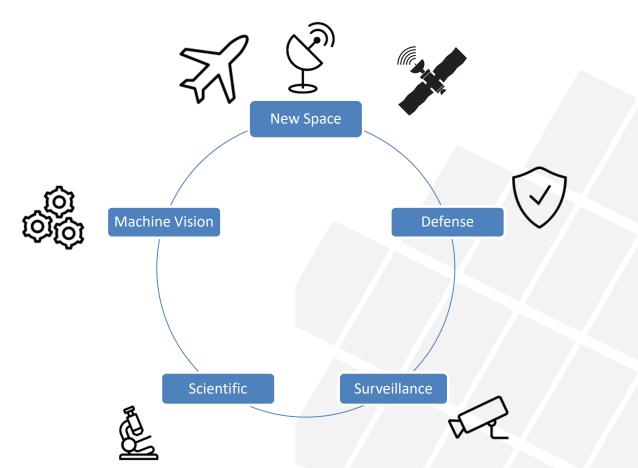
11/09/2019 Simon Ferré simon.ferre@new-imaging-technologies.com

1 Impasse de la Noisette Verrières le Buisson 91370 FRANCE

COMPANY OVERVIEW

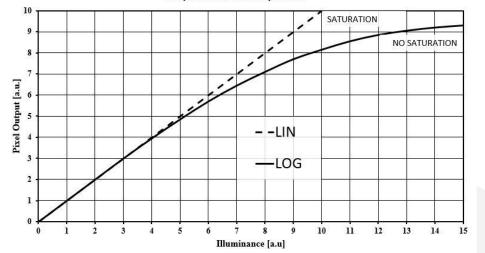
Visible and SWIR SENSORS, CAMERAS AND MODULES

WDR SOLUTIONS IN VISIBLE AND SWIR



>20 PATENTS

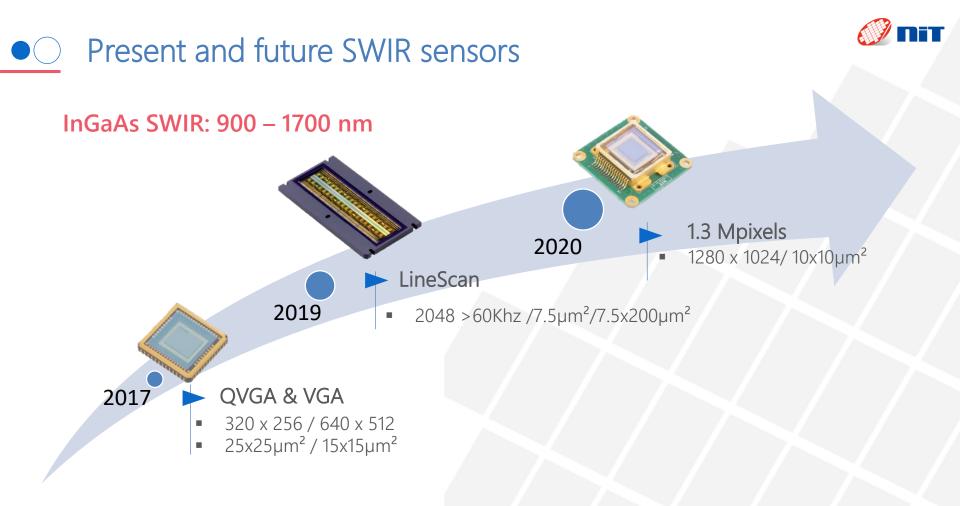
2



• MARKETS AND CUSTOMER INTEGRATIONS

• CORE TECHNOLOGY – HDR PIXEL

Response curve comparison

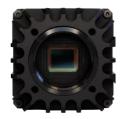


pixels

IN PIXEL HDR : 140dB - NO SATURATION

SINGLE EXPOSURE FITS ALL LIGHTING SITUATIONS

EXTREMELY SIMPLE CONTROLS AND SETTINGS (no cooling system)


• OUR PRODUCTS FOR YOUR APPLICATION

WiDy SWIR

- VGA and QVGA (HDR)
- Gated Imaging option
- Cost effective solutions

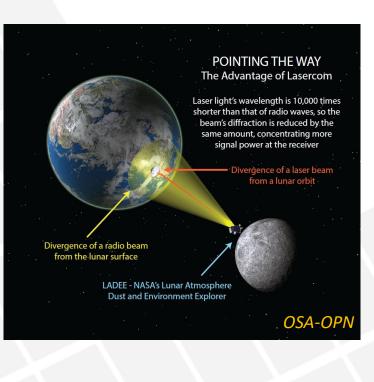
WiDy SenS

- VGA
- High Sensitivity and HDR
- Gated Imaging option
- SWIR imaging swiss-knife

WiDy Nano

- VGA (HDR)
- HDR 120dB
- Miniature size

SWIR applications for new space


Three typical and future use cases

Space optical telecommunications (TRL 6-8)

Cooled cameras for Astronomy (TRL 4-6)

Hyperspectral SWIR cameras for earth monitoring (TRL 3-5)

• Use case 1 – spatial optical telecommunications

Radio frequency link

- Laser-based optical link
 - → Power efficient
 - → More secure information (beam waist /1000-20000)
 - \rightarrow High speed (x100-300)
 - → Lower SWaP
 - → No license

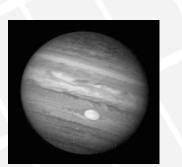
Requirements

- → High frame rate (230-5000fps)
- → High sensitivity
- → High dynamic (120 dB)
- → Cost-effective
- → Short lead time

• USE CASE 2 - Astronomy

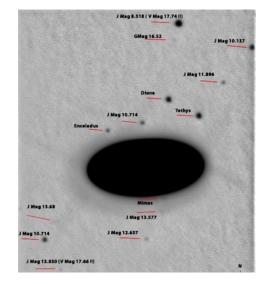
• Needs

- Very long exposure time (>> 1sec)
- Low dark current and readout noise
- Cooling capabilities
- Acceptable SWaP
- What we propose
 - Cooling capabilities flexibility
 - Single/double Peltier cooled
 - Cryogenic cooled
 - High performances
 - Advantages of SWIR (higher transmission throught the atmosphere, ...)
 - Cost-effective solutions



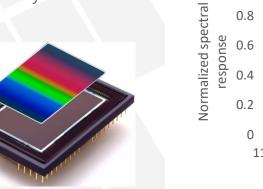
Parameter	Value
ΔΤ	60°C/150°C
Dark Current @ -40°C	<200°e-/sec
Frame rate	230 fps
Mode	NDRO / Linear / Log
Exposure time	>> 1min
Size	~ H55 x W75 x L140 mm

• DEEP COOLED INGAAS CAMERA images

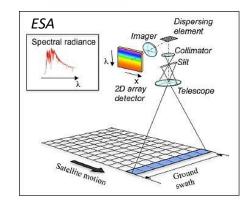


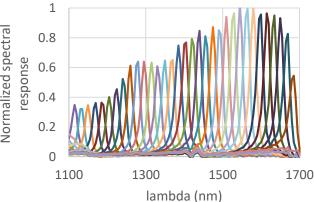
Jupiter (H band filter: 1475-1700nm)

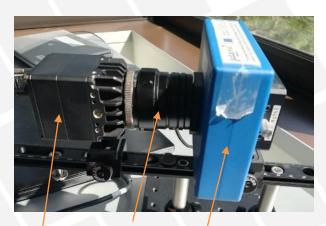
Saturn rings in SWIR (J band filter: 1100-1325nm)



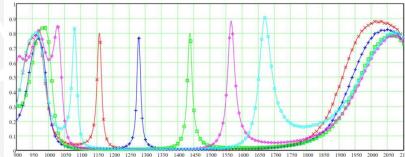
Same image with contrast reversed and stretched


Use case 3 – hyperspectral earth mapping First approach: Linear Variable Filter (LVF)


- Many applications in earth monitoring
 - Smart agriculture
 - Mineral ressources prospect
 - Fire fighting
 - Pollution surveillance
- Statement: hyperspectral cameras are not very space friendly
 - Optical and mechanical complexity
 - Bulky, fragile and expensive


AIRBUS MBDA

Use case 3 – hyperspectral earth mapping Second approach: Fabry Pérot Interferometer (FPI)


- For snapshot 2D imaging
- Scanning from 1100nm to 1600 nm
- 25 wavelengths/seconds
- On drone tests to be led late 2019

Lens / Camera PFPI

DGA

VT

Conclusion

• What we can offer: SWIR camera and sensors

- HDR and high sensitivity
- Fast framerate
- Active imaging mode
- Cost-effective solution
- Short lead time
- What we are looking for (thank to EPIC!):
 - Market and field feedbacks
 - Partnerships

This presentation was presented at EPIC Meeting on New Space 2019

HOSTED BY

