Sensitive optical receivers for space communication

Prof. Peter A. Andrekson

Fiber Optic Communications Research Centre (FORCE)

Department of Microtechnology and Nanoscience Chalmers University of Technology Gothenburg, Sweden

The idea

✓ To increase capacity and reach in free-space optical transmission links

Applications in very long-reach systems (satellite - satellite/earth, and beyond)

Background

- Currently, RF transmission dominates in space communication.
- Lightwave-based transmission is however, emerging. A key benefit is much smaller diffraction-induced losses due to the much shorter wavelength.
- Loss in free space is quadratic with reach:

$$\frac{P(r,z)}{P_0} = 1 - exp\left(-\frac{2r^2}{\omega(z)^2}\right) \cong \frac{2r^2}{\omega(z)^2} \text{ with } (z) \cong \frac{\lambda z}{\pi \omega_0} \text{ and } r \text{ is aperture radius}$$

?

- Diffraction loss (at 1550 nm) over 0.4 million km (to the moon) with 10 cm aperture is about 80 dB.
- As long-range systems are diffraction-limited, the SNR, i.e. capacity and reach, will be fundamentally limited by the noise in the receiver, as well as by the available transmit power and the channel loss.

What determines the receiver sensitivity?

(input power needed for error-free operation)

Phase-sensitive optical amplifiers (PSAs)

- In contrast to conventional optical amps (EDFAs), PSAs can reach a noise figure of 0 dB (1 dB measured): [Z. Tong, et. al, Nature Photonics 5, 430-436 (2011)]
- Involves three waves: signal, idler and pump, which need to be phase controlled
- Transmission reach extension of 5x demonstrated in fiber systems
- Key challenges include management of chromatic dispersion, polarization, and nonlinearities
- These challenges are essentially non-existing in free space, leading to much simpler implementation!
- PSAs provide the lowest possible amplification noise, making them the ultimate solution to provide the best possible receiver sensitivity!

Fiber-Optic Parametric Amplifiers

Nonlinear index of refraction; n = n(I)Pump and signal waves mix in a nonlinear media creating a dynamic grating

Peter Andrekson

CHALMERS

Free space optical link using optical pre-amplification with PSA

- <u>Only signal</u> is used in the receiver (no need for particular, high BW receiver)
- <u>Sensitivity improvement</u> can be used for higher throughput/reach and traded for smaller aperture
- <u>Can be combined</u> with all other approaches for sensitivity improvement; coherent detection, sensitive modulation formats, coding, and parallel links (WDM, SDM).
- Challenges (aside from the already existing ones in FSO links) include:
 - PSA pump recovery can impact power budget we use optical injection locking
 - Optical phase-locked loop

Experimental FSO link setup

- 10.5 Gbd QPSK signal
- PSA amplification: 21 dB, NF = 1.2 dB
- Half-rate standard FEC code (DVB-S2), i.e. 100% overhead or net information rate 10.5 Gb/s
- Injection locked pump wave at -71 dBm (80 pW) or 0.06 photons per symbol (<< P_s)
- Penalty due to presence of pump (received signal + idler power is > -59 dBm): 0.26 dB, additional
 0.3 dB penalty due to OIL in PSA
- Comparison with EDFA preamplifier also made (NF = 3.7 dB)

Experimental results at information rate 10.5 Gb/s

CHALMERS

A comparison with previous experimental results ("black-box" sensitivity)

Summary:

1 PPB (BER < 10⁻⁶) "black-box" sensitivity at 10.5 Gb/s (0.8 PPB based on GMI) Novel approach and best sensitivity reported to date

Constellation diagram at 1 PPB (error-free)

Peter Andrekson

This presentation was presented at EPIC Meeting on New Space 2019

HOSTED BY

