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(1) Objectives

Scientific objectives

▪ Improve the quality of weather forecasts

▪ Advance the understanding of 
atmospheric dynamics and climate 
processes

Explorer objectives

▪ Demonstrate space-based Doppler Wind 
LIDARs potential for operational use

Observation means

▪ Provide global measurements of 
horizontal line of sight (HLOS) wind 
profiles in the troposphere and lower 
stratosphere
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Day 6
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(1) Forecast bust, Europe 03/14

Approx error propagation

Pacific

Magnusson, 2017
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(2) Mission Design
Aeolus

320km

Sun

35°

Polar orbit
Ascending node 1800LT
7day repeat cycle, 111orbits

(2) Aeolus – Mission design

../../ATG-Medialab/2013 Aeolus Animations/10_ADM_WindProfiles.30.04.15.mp4
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Telescope
- 1.5m diameter
- Cassegrain type
- SiC structure

Aeolus
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Optical
Bench

Mie channel

Rayleigh channel

Laser Head

Aeolus
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Optical
Bench

Mie channel

Rayleigh channel

Laser Head

Aeolus

vLOS

Ansmann et al., 2007

Emission
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➢ Nd:YAG

➢ Diode pumped

➢ Wavelength
354.8nm

➢ Repetition rate 
50.5Hz

➢ Emit energy
80mJ

(2) Aeolus – ALADIN(Atmospheric Laser Doppler Instrument)

Leonardo
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(2) Aeolus – ALADIN(Atmospheric Laser Doppler Instrument)
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failure on ALADIN 
laser after this point!
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FMA UV 
optics

Courtesy of ALADIN Team

No laser damage 
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Launch
22 Aug 2018

(3) Launch and first measurement

https://www.esa.int/Our_Activities/Observing_
the_Earth/Aeolus/Watch_Aeolus_launch_replay

https://www.esa.int/Our_Activities/Observing_the_Earth/Aeolus/Aeolus_wows_with_first_wind_data

Subtropical Jet Polar Vortex

First published wind measurement
12 Sep 2018

SPTropics
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(3) Measurement example

https://www.esa.int/Our_Activities/Observing_
the_Earth/Aeolus/Watch_Aeolus_launch_replay

Dorian’s clouds subtrop jet

Courtesy of M. Rennie, ECMWF

Launch
22 Aug 2018
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Tropics, conventional (aircraft, 
radiosondes, profilers) wind SH, conventional wind

• Mie
• Ray
• Ray
+Mie

(3) Fit of short-range forecasts to other obs.

better
Courtesy of M. Rennie, ECMWF

Preliminary studies with 

short time series indicate 

improvement in forecast

- Tropics  troposphere winds 

~1-2% at day 1-2

- S. Hemisphere ~1-2% at 

day 1-2, 3% at days 4-6, and 

5% at days 5-8

→ 2nd most important in SH!

~0.7% of 28M data
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(3) Inflight Observations:
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Energy decrease

FMA

• Master oscillator alignment

• Photodiode calibration factor

• Laser diode degradation

→ Can be revisited later

FMB

• Under investigation

(3) Inflight Observations: Emit Energy
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Courtesy of A. Ciapponi, ESTEC

(3) Inflight Observations: Frequency Noise

Frequency noise

• 1 m/s ≈ 5.64 MHz

• 5-7 MHz rms achieved

• in orbit!

Num of shots

Laser Operation and Verification Facility
• (yet) uncorrelated time periods of

• increased frequency jitter (100MHz p-p)

• Orbital variation found

• 11-15 MHz rms nadir attitude

Mie channel fringe location
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Courtesy F. Weiler, DLR

(3) Inflight Observations: Hot Pixels

Hot Pixels

• Continuously increasing number of pixels show increased dark current

• Longterm in the order of 2-15LSB ≈2e-/shot, partially RTS signature

Rayleigh ACCD

pixel column
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Offset

Courtesy F. Weiler, DLR
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(3) Inflight Observations: Hot Pixels

Correction works!

stripes caused
by hot pixels

generated with VirES https://aeolus.services/

Courtesy F. Weiler, DLR

Hot Pixels

• Continuously increasing number of pixels show increased dark current

• Longterm in the order of 2-15LSB ≈2e-/shot, partially RTS signature

June 2019

Rayleigh ACCD
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✓ More than 13 years of development challenges

✓ Invaluable experience has been gained, e.g., 

✓ Laser thermal-mechanical design (energy, pointing 

drifts) and susceptibility of laser frequency to micro-

vibrations

✓ Optical component development and testing for high 

UV-energy lasers

✓ Telescope thermal-mechanical design

✓ Lidar system-level design (laser + optical receiver) 

and its representative end-to-end testing (OGSE as 

atmospheric simulator)

Summary
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Summary

From a lidar-instrument perspective it was demonstrated 

that:

✓ a space-borne, direct-detection wind lidar can 

measure atmospheric winds by use of molecular 

Rayleigh and aerosol/cloud Mie backstatter => 

technical proof 

✓ a powerful UV lidar can be operated in space over 12 

months with high frequency stability

✓ internal and atmospheric calibrations can be used to 

characterize the instrument including returns from the 

non-moving ground => bias corrections

✓ Positive impact on NWP according to first preliminary 

results as reported by various met centers
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Thanks
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• Current settings will be kept global until October (data set July – Sep)
• Northern Hemisphere + Tropics (+90 to -25deg latitude, stratospheric aerosol)
• South Mid-Latitudes (-25 to -60deg)
• South Pole (-60 / -90deg, PSC)

Aeolus – Range Bin Strategy

• Campaign boxes with specific settings 
added (Sep to October)
(DLR-AVATARI around Iceland,
East Mediterranean Aerosol Range bin Settings)

• Plans to perform special 3-week 
measurement period for AMV (Oct)
(need 250m RBS in specific altitudes)

• New global settings Nov-Feb based on 
first feedback and for Strateole2
(latitudinal belts 90-60-30deg)
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Major development lessons learned: 
1) Changes of thermal interfaces in vacuum

Relative energy evolution for different 
mechanical configurations of the Aladin laser 
pump units showing energy degradation of 
30% over a few hundred hours (n.b. this only 
happens in vacuum when the pump units are 
ON). A residual element of this probably 
caused the energy loss on FM-A.

Highly dissipative 

pump units

Highly alignment 

sensitive MO

Combining highly dissipative 
pump units and a highly 
alignment sensitive MO 
(without isostatic mounting) is 
simply not good design and 
should be changed

Lessons learned:

❑Where possible remove units 
with high dissipation away 
from alignment sensitive 
components

❑ Attempt to minimize the 
mechanical constraints on the 
interface and/or the support 
structure for the alignment 
sensitive elements by making 
their mounts iso-static 

Design solutions:

❑Use ATLID design (PU’s moved 
away from optical bench) with 
additional pump unit with pre-
demonstration that this 
improves the stability

❑ Improve the iso-staticity of the 
mounts
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Major development lessons learned : 
2) LID: control your processes and test as you fly

Laser-induced damage events during the Aladin laser development

Porous coatings 
release water in 
vacuum leading to 
a spectral shift 
(due to effective 
refractive index 
change) and a 
massive reduction 
in the laser damage 
threshold (due to 
generation of 
tensile stress in the 
coating)

Small defects can lead to damage after 10’s of Mshots and 
they can arise from many sources

Lessons learned:
❑ If you operate in vacuum, test in vacuum
❑Use fully densified coatings
❑Use processes that inherently reduce the number of 

small defects on both substrates and coatings
❑ Ensure adequate physical-chemical analysis is 

undertaken to avoid potential problems and control 
processes
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Major development lessons learned : 
3) LID: you are only as good as your weakest optic

Instrument level testing with FM-A

Lessons learned:
❑ Test the full area of the 

optic which contains the 
beam

❑ If damage precursors are 
activated then perform 
test directly on the defect 
to ensure it will be stable

❑ Test for an adequate 
number of shots

❑ Ensure there is a margin 
on LIDT by > x2

Instrument level testing of the 
weakest optic in the emission 
path
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Major development lessons learned : 
4) You need some oxygen to prevent LIC

Introduction of O2 eradicates LIC

Loss of 50% of the energy of the Aladin EM laser 
vacuum test after 6 hrs (not good for a 3yr mission)LIC: highly absorbing deposits formed by the interaction of the laser with organic outgassing 

on the surface of optics

Loss of 5% energy after 6 months

Lessons learned:
❑ Classical contamination 

control methods do not 
stop LIC but still mitigate 
its effect

❑Get rid of “bad” materials 
(silicones, aromatics,… as 
far as you can)

❑High power lasers need 
an oxidising environment 
to operate in
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(1) Wind information in recent ECMWF cycle

Obs type % of 
total
count

Mean assigned  
u-wind error 
(m/s)

AMVs 47 4.6

Scattero
meter

23 1.5

Radiosondes 11 2.0

Wind 
profilers

10 1.8

Aircraft 9 2.4

Rennie, 2014
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(3) Inflight Observations: Harmonic Bias
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Harmonic Bias

• Orbital cycle of satellite to surface distance and thermo elastic variations

• result in harmonic residual of the “zero wind” surface return

• Seasonal variation

• Introduce bias up to

• ±6m/s that can be 

• corrected to about 1m/s

• Non-orbital biases under

• investigation
Courtesy I. Nikolaus, Phy. Solutions

EQEQ EQNorth Pole South Pole
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