

FBG and FBG-Sensors for use in Difficult Environmental Conditions

Alexey Zarenbin EPIC World Photonics Technology Summit 2019 29-30 August, Berlin

Founded in 2005

Main business:

Manufacture different type of Fiber Bragg Gratings

Development and production of fiberoptic sensor systems

Development and production of ASE and high power amplifiers

Optimization design specialty fibers for fiber optics devices

ISO 14001-2015

ISO 9001-2015

Intellectual property - 10

About FORC-Photonics

- 35 specialists (6 PhD) 4 groups
 - R&D group
 - FBG group
 - Production group
 - Metrological support group

500 square meters area

FBG technology

FBG MANUFACTURED METHOD

- ➢ INTERFEROMETRIC METHOD
- ➢ MASKS METHOD

➢ FEMTOSECOND METHOD

FBG MANUFACTURED METHOD	INTERFEROMETRIC METHOD	MASKS METHOD	FEMTOSECOND METHODS
Wavelength range, nm	600 ÷ 2300	633, 780, 794, 797, 799, 801, 852, 940, 976, 1030, 1057, 1060, 1064, 1080, 1125, 1150, 1178, 1310, 1510 ÷ 1580, 1650, 1900, 1908, 1952, 2300	700 ÷ 2000
FBG types	Uniform, fiber laser matched pairs, π -phase shifted, tunable, athermal packaged	Uniform, apodized, fiber laser matched pa tunable, athermal packaged	airs, chirped, tilted, π -phase shifted,
Types of fiber	Single-Mode	, PM, Double clad, LMA	Single-Mode, PM, Double clad, LMA, Radiation resistant, Active and Passive fibers
Reflectivity, %	0.2 ÷ 99.9	0.2 ÷ 99.9	0.2 ÷ 95
Bandwidth (WFHM), nm	0.05 ÷ 1.2	0.05 ÷ 1.2	0.1 ÷ 7
FBG Recoating	None, Acrylate, Polyimide, Aluminium, Copper		
Chirp Rate, nm/cm	no	0.01 ÷ 33	0.01 ÷ 33
FBG inscription thought the fiber protective coating	no	no	Acrylate, Polyimide

FBG technology

FBG and FBG-Sensors for use in Difficult Environmental Conditions

5

FBG specific application type

FBG WAVELENGTH LOCKER

FBG FABRY-PEROT INTERFEROMETER

FBG RAMAN LASER (NOT REMOVING COATING)

FBG WDM ITU FILTER 100/200GHZ

RADIATION HARD FBG

FBG sensors

✓ Sampling frequency of sensors 8 kHz

FBG sensors

High temperature and radiation resistance sensors

- Temperature sensor
- Strain sensor
- Displacement sensor
- Acoustic sensor

Operating temperature up to +500 °C

Radiation resistance condition:

- absorbed dose of γ-irradiation 2,9*10^7 Gy (IVG-1M nuclear reactor).
- fluence of fast neutrons 4.5*10^17 n/cm^2 (WWR-K reactor)

Control of the coke column at the refinery

T inside=500C T outside=230C

The temperature control resistors and basbar contact connection of the power supply system

Tinside = 400C

Q-ty > 3500pcs

FBG and FBG-Sensors for use in Difficult Environmental Conditions

T = 150C

Temperature, strain, acoustic and displacement sensors for Blanket and Divertor of vacuum vessel

• Divertor and Blanket directly face the thermonuclear plasma and cover an area of about 210 + 620 m², respectively.

• All these components are mechanically attached to the Vacuum Vessel.

• All these components are designed to be replaced by RH tools

• Max heat released during nominal pulsed operation: ~850 MW

• Removed by four independent water loops (~1300 kg/s each), at 4 MPa water pressure, ~70 (inlet), ~130 (outlet) °C

T = 350C

Optical fibre acoustic sensors for the early detection of "Critical Heat Flux" events

Test program

Table matches the technical requirements applied to each sensor type with certain tests, which have to be performed to satisfy these requirements.

Technical requirement	Temperature sensor	Strain sensor	Displacement sensor	Acoustic sensor	Test
Operating temperature , °C	20-350	250-350	250-350	250-350	Accelerated temperature aging
Temperature limit, °C	600	-	-	-	test
Fatigue life	$\sim 10^3$ cycles, 70 → 350 → 70°C	-	-	-	Thermocycling test
	-	~ 3*10 ⁵ cycles, ± 2000 με (Strain limits ± 2500 με)	-	-	Combined cyclic & static strain test
	-	-	~ 10 ⁵ cycles, ± 5 mm (Displacement limits ± 8 mm)	-	Combined cyclic & static displacement test
	-	-	-	± 400 m/s2 peak (± 40 g)	Acoustic test

Test equipment

Servohydraulic fatigue testing system INSTRON 8802 equipped with a high-temperature climatic chamber INSTRON SFL 3119 - 408, which allows operating in the temperature range from -70°C to + 600°C.

Vibration testing system THV–216–A–600C equipped with high-temperature climatic chamber which allow operating in the temperature range up to +600°C.

Certificates

Verification certificates of the test equipment

Specialty fibers

YTTERBIUM DOPED FIBERS (PHOTODARKENING FREE)

YDF-SM-6/125	operation without power degradation in core-pumped laser and amplifier schemes (optimal fiber length ~ 0.5-1 m)
YDF-DC-6/125	highly efficient high-reliability lasers operating in the 1.03-1.08 μm spectral range.
YDF-DC-10/125	high-peak-power cladding pumped amplifiers.
YDF-DC-40/400- PM-TPR	operation without any power degradation in extremely high- peak-power cladding-pumped amplifiers

BISMUTH DOPED FIBERS

BiDF-SM-7/125	highly efficient ASE sources, lasers and amplifiers operating
	near 1440 nm

ERBIUM DOPED FIBERS

EDF-4/125-10	highest efficiency of telecommunication amplifiers
EDF-4/125-25	amplifier length without pump-to-signal conversion efficiency degradation
EDF-4/125-50	amplification of ultra-short pulses, when high efficiency, a short amplifier length and a high negative dispersion are required
EDF-14/125-35	low-nonlinearity amplifiers

THULIUM - YTTERBIUM DOPED FIBERS

TYDF-DC-7/125	highly efficient pumping with MM pump sources at 915/975nm. Pumping with conventional sources near 790 nm is also possible, as well as core pumping with EDFL operating at 1550-
	core pumping with EDFL operating at 1550-

PHOSPHOROUS DOPED FIBERS

P-SM - 5	highly efficient Raman lasers and amplifiers operating in the 1.1-1.6 μm spectral range
P-SM – 5 PM	specially designed with ability to maintain polarization

HIGHLY NONLINEAR FIBERS (GERMANIUM-DOPED)

HNLF	constructing highly efficient Raman lasers and amplifiers, dispersion compensators
HNLF DS	shift of the zero dispersion wavelength to the 1550 nm spectral region: supercontinuum generation, parametric conversion and etc.

METAL-COATED SILICA FIBERS

Aluminum	High OH/ Low OH. Excellent long life fibers for
coated fibers	harsh environmental applications

Tapered fiber YDF-DC-40-400-TPR

! NO high order modes excitation beam quality factor is typically below 1.2

! Scaling of the core D up to 10 times as compare to SM fiber

FBG and FBG-Sensors for use in Difficult Environmental Conditions

Yb-doped core (D = 40-60 µm, NA=0.08, 2 wt.% of Yb₂O₃)

Fiber specifications	YDF-DC-40/400-PM-TPR		
Signal type	Signal input end	Signal output / pump input end	
Core diameter, µm	9 ± 1	> 40	
Clad diameter, µm	90 ± 10	450 ± 100	
Cutoff wavelength, µm	< 1.0	-	
MFD, μm	10.0 ± 2.0	> 20 (25-30 typical)	
Inner clad shape	PANDA with F-doped second cladding		
Core NA	0.085 :	± 0.01	
Clad NA	> 0.	.26	
Clad absorption (915 nm), dB/m	> 2	2.5	
Clad absorption (976 nm), dB/m	> ′	10	
Grey loss (1150 nm), dB/km	< 5	50	
notodarkening resistance > 20 times better compare to the A Yb-doped fiber		pare to the Al ₂ O ₃ -SiO ₂ ed fiber	

Tapered fiber YDF-DC-40-400-TPR High peak and average power

Application: High speed micromachining

- Amplification chirped pulse up to sub-MW peak power (directly from amplifier) with following pulse compression to fs duration and few tens peak power [1]

- Simultaneous achievement of high average and peak power: 70W of average power and 0.8 MW of peak power [2]

RECENT RESULTS [3): 150W of average power and 0.9 MW of peak power

Additional advantages:

- Diffraction limited beam quality (typical M² <1.2)
- Simple in use compact monolithic laser design
- Compatible with mass production

[1] K. Bobkov et al, "Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier," Opt. Express 25, 26958 (2017)

[2] K. Bobkov et al, "71 W average power sub-MW peak power diffraction-limited monolithic tapered fiber amplifier", CLEO-Europe'2019, paper CJ-4.1

[3] K. Bobkov et al, "Generation of picosecond pulses with 150 W of average and 0.92 MW of peak power from an Yb-doped tapered fiber MOPA", was sent to Photonics West conference (2020)

Laser scheme: Seed source (1064 nm) ass few preamplifiers (Yb:1,2) and than to the tapered fiber (Yb:taper) which is counter-pumped by 976 nm pump through dichroic mirror (DM1). Repetition rate of the signal is controlled via acoustic-optical modulator (AOM)

Our solutions allow easy achievement of high peak and average power

Few world records in term of peak power were set with our solutions!

1.06 µm spectral region (highest simultaneous peak and average power):

Yb-doped tapered fiber amplifiers (available product: (YDF-DC-40-400-TPR tapered fiber)

[1] K. Bobkov et al, "Sub-MW peak power diffraction-limited chirped-pulse monolithic Yb-doped tapered fiber amplifier," Opt. Express 25, 26958 (2017)
[2] K. Bobkov et al, "71 W average power sub-MW peak power diffraction-limited monolithic tapered fiber amplifier", CLEO-Europe'2019, paper CJ-4.1
[3] K. Bobkov et al, "Generation of picosecond pulses with 150 W of average and 0.92 MW of peak power from an Yb-doped tapered fiber MOPA", was sent to Photonics West conference (2020)

1.55 μm spectral region (highest pulse energy, highest peak power for single-frequency pulses, highest efficiency for high peak power amplifiers):

cladding pumped large mode area Er-doped (Yb-free) fiber amplifiers (available product: OEM and bench top fiber amplifier FOA-EDFA-HP-30-1)

[1] L.Kotov, et al, "Millijoule pulse energy 100-nanosecond Er-doped fiber laser," Opt. Lett. 40, 1189-1192 (2015)

[2] L. V Kotov et al., "Record-peak-power all-fiber single-frequency 1550 nm laser," Laser Phys. Lett., vol. 11, p. 095102 (2014)

[3] M.M. Khudyakovet al, "All fiber combined Er/Er-Yb amplifier for efficient amplification of high peak power single frequency pulses", accepted for ASSL'2019 conference.

Thank you for attention!

+7 495 589 76 72

info@forc-photonics.ru forc-photonics.ru

This presentation was presented at EPIC World Photonics Technology Summit 2019

HOSTED BY

