

MATERIALS THAT MATTER®

Mass-Scale Automotive Optical Sensing

The Road to Everywhere

30.08.2019 Dr. Norbert Lichtenstein

II-VI Incorporated CONFIDENTIAL - Export Control Classification EAR99

II-VI Overview

"TWO SIX"

Refers to groups II and VI of the Periodic Table of Elements IIIA IVA

В C Ν

AI

In

IIB

Zn Ga Ge

Cd

Hg TI Pb VA. VIA 0

Ρ S

i agis a

As

Sb Te

-

Bi Po

Se

Si

10.00

30

Sn

II-VI Incorporated CONFIDENTIAL - Export Control Classification EAR99

Overview

- Rise of mass-scale 3D optical sensing
- Automotive the next frontier?
- Automotive 3DS needs and challenges
- LIDAR implementations
- Wavelength selection
- Comparable sensor commercialization timeline
- Analyst expectations for autonomy
- Accelerating adoption

Mass Scale 3D Optical Sensing

Automotive as the New Frontier for Optical Sensing

Waymo's self-driving platform 19 cameras, 4 LIDARs, 360 degree coverage

- According to Yole, by 2045 almost 70% of vehicles sold will integrate SAE L3 and higher autonomous capabilities
- Consensus (except for Tesla, others...) that active illumination of some kind will be required

Replicating the Success of 3D Sensing

Opportunities for 3DS in automotive

- Short range solutions for in-cabin monitoring
 - Convenience feature/crash protection optimization
 - Will borrow heavily from existing consumer 3DS
 - Volumes relatively low vs. other consumer applications
- Mid- and long-range solutions for external sensing
 - Cameras, thermal imaging already in deployment,
 - LIDAR in infancy

II-VI

Today Short Wavelength Multi-Junction EELs SPADs/Si APDs 128 lines vertically 30*20 deg FOV = 60kpx

Challenges

Biological Risks Light Pollution Cost/Complexity Resolution/Range Automotive Supply Chain

Solutions(?)

Long Wavelength? "Flash"? FMCW? VCSEL? HCSEL?

LIDAR Implementations: Range Measurements (Z)

AM – e.g. TOF.

- + : Simple, proven, cheap
- -: Power hungry, SNR is key: narrow bandwidth, background light suppression

• FM – e.g. FMCW.

- + : Improved SNR (immune to photon background), interference resistant, relative velocity
- : Requires highly linear source, data processing intensive, high BW electronics (wavelength dependent)

LIDAR Implementations: Scene Capture (X,Y)

- Scanned Lower power, scalable, cheap(?)
 - MEMS, Galvanometric Scanners, Polygons, OPAs

- Flash No temporal or spatial corrections, no moving parts, but requires high power, small FOV
- Tradeoffs in range, resolution, FOV, power...

Yoo, H.W. et al. Elektrotech. Inftech. (2018) 135: 408

Wavelength: Water Water Everywhere...

		MPE	Rain/Fog	Solar	Wet Target	Cost	Notes
808nm	EELs	-	+	-	+	+	
850nm	VCSELs	-	+	-	+	++	GaAs platforms mature and scalable (VCSELs particularly).
905nm	EELs	-	+	-	+	++	Arrays and multi-junction EELs
940nm	EEL, VCSELs	-	+	+	+	++	for higher power
1064nm	DPSS	-	+	-	+	-	DPSS modules
15XXnm	EDFAs, EELs	++	-	+	-	-	InP or EDF based, eye- <u>safer</u>
10.6um	CO2	+	-	++	-	-	Reduced scatter, extreme H20 absorption

wiki/Solar_irradiance

II-VI

Johns Hopkins APL Technical Digest, from R. McCally et al., "Laser eye safety research at APL," V 26 p. 46 (2005) ©The Johns Hopkins University Applied Physics Laboratory

Wojtanowski et al. Opto-Electron. Rev. (2014)

II-VI Incorporated CONFIDENTIAL - Export Control Classification EAR99

When Will It Happen?

II-VI

What do the Analysts Think?

II-VI

Deployment Scenarios

What can accelerate mass-scale deployment of 3DS in automotive?

- Solid State architectures, lower ASP, higher resolution, fully addressed eye and environmental optical hazards...
- Is this our only path forward?
 - Vehicles vs. Infrastructure where is the balance?
 - Robocars Truly autonomous self-sufficient sensor platforms?
 - Consumer vehicles networked control?
 - Exclusive operating zones?

LIDAR Product Coverage

MATERIALS THAT MATTER®

This presentation was presented at EPIC World Photonics Technology Summit 2019

HOSTED BY

